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ABSTRACT

This paper considers compressible turbulent flows at low turbulent Mach numbers. Con-

trary to the general belief that such flows are almost incompressible , (i.e. the divergence

of the velocity field remains small for all times), it is shown that even if the divergence of

the initial velocity field is negligibly small, it can grow rapidly on a non-dimensional time

scale which is the inverse of the fluctuating Mach number. An asymptotic theory which en-

ables one to obtain a description of the flow in terms of its divergence-free and vorticity-free

components has been developed to solve the initial-value problem. As a result, the various

types of low Mach number turbulent regimes have been classified with respect to the initial

conditions. Formulae are derived that accurately predict the level of compressibility after the

initial transients have disappeared. These results are verified by extensive direct numerical

simulations of isotropic turbulence.

XResearch was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while all of the authors were in residence at the Institute for Computer Applications in
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I. Introduction

Turbulence is the most common state of fluid motion. It is an all pervasive ubiq-

uitous phenomenon present in, to cite a few instances, weather patterns, ocean cur-

rents, high-temperature plasmas, astrophysical jets, and combustion. Despite the

best theoretical and experimental attempts of more than a century, and more recent

computational approaches, turbulence remains to be one of the great unsolved prob-

lems of fundamental physics, and poses a grand challenge to any type of scientific

investigation.

There has of course been some progress in our understanding of turbulence in

low-speed flows which are essentially incompressible (see Dwoyer, Hussaini and Voigt

1984). There have also been a few attempts at predicting the effect of compressibility

on some known results of incompressible turbulence such as the Kolmogorov spectrum

(Zakharov and Sagdeev 1970, Kadomtsev and Petvishvili 1973, Moiseev,Sagdeev, Tur

and Yanovskii 1977, and L'vov and Mikhailov 1978). The majority of work in com-

pressible turbulence focuses naturally on the linear regime, owing to the inherent

dif/iculty of treating nonlinearities which now involve variable density as well. Moyal

(1952) appears to be the first one to look at spectra of homogeneous isotropic turbu-

lence in compressible fluids. He decomposed the velocity field in the spectral space

into a longitudinal component (random noise) and a transverse (eddy turbulence)

component. This is in fact equivalent to a Helmholtz decomposition (gradient of a

scalar and curl of a vector) in physical space. The longitudinal component in physical

space is variously known as the acoustic component or compression turbulence; the

transverse component is also termed the incompressible component, the solenoidal

component or shear turbulence. A broad conclusion of his work was that the inter-

action between these two components is exclusively due to the nonlinear terms, and

such interactions are the strongest at high levels of turbulence and at high values of

P_eynolds number. The properties of sound emitted in the far field by eddy turbulence

were studied by Lighthill (1952, 1954, 1956). His formula for sound emission is found

in laboratory experiments to remain valid far beyond the linear regime. Kovasz-

nay (1957) proposed a decomposition of compressible turbulence into three modes -

the vorticity mode, the entropy mode and the acoustic mode - and showed how to

determine their levels and correlations from mass flow and stagnation temperature

fluctuations measured by a hot-wire anemometer. Chu and Kovasznay (1958) have

outlined a consistent successive approximation procedure in terms of an amplitude

parameter, and have provided explicit formulae for second-order interactions among

these three modes. They provide no explicit solutions since their main purpose was

to provide a consistent framework to assess the nonlinear interactions in the experi-

mental data. Tatsumi and Tokunaga (1974) and Tokunaga and Tatsumi (1975) study

the interactions of weakly nonlinear disturbances such as compression waves, expan-

sion waves and contact discontinuities using a reductive perturbation method due

to Taniuti and Wei (1968). The key result is that the interaction between waves



of different families of characteristicsleadsto alterations in their amplitudes, phase
velocitiesand propagation directions, whereasthe interaction betweenwavesof the
samefamily of characteristicscausesmergeror coalescence.They further inferredthat
the statistical properties of two-dimensionalshock turbulenceare similar to thoseof
one-dimensionalshockturbulence which in turn are identical to thoseof Burgerstur-
bulence.More recently,in a preliminary study of return to isotropy in a compressible
flow, Lumley (1989) has provided someorders of magnitude estimatesin terms of
Mach numberand Reynoldsnumber. An excellentreview of the published literature
on compressibleturbulence up to 1967 may be found in Monin and Yaglom (1967).

The computational approach to turbulence is based on the Navier-Stokes equa-

tions. The first attempt to solve numerically the equations of motion for compressible

homogeneous turbulence is due to Feiereisen, Reynolds and Ferziger (1981). They as-

sumed the divergence of the initial flow field and its time-derivative to be both zero.

It was therefore not surprising that their results for isotropic compressible turbulence

did not show any departure from the corresponding incompressible data. Recently,

Passot and Pouquet (1986) have carried out numerical simulations of two-dimensional

homogeneous compressible turbulent flows. They show that the behavior of the flow

beyond an initial turbulent Mach number of 0.3 differs sharply from the lower Mach

number cases which are characterized by the absence of shocks.

In the present paper, we develop an asymptotic theory (with turbulent Mach

number as a small parameter) to solve the compressible Navier-Stokes equations.

The problem is set up as an initial-value problem to study the influence of initial

conditions on the subsequent turbulence structure and its dynamical evolution. Ex-

plicit relationships between the initial turbulent Mach number, pressure and velocity

fluctuation levels are derived which are valid after the initial time transients have

disalSeared. Direct numerical simulations of two-dimensional isotropic compressible

turbulence are performed to validate the results.

II. Theoretical Analysis

A. Problem Formulation

The compressible Navier Stokes equations are, in non-dimensional variables,

OP

Ot

cgp
0-7 + V.(pu) = 0,

+ v.(puu) - 1 1 .
O-----_ 7M _ VP + _eeV-a,

--+u. VP+3'PV.u - 7 V-_VT+3'(7-1)M_ @,
RePr Re

(i)



where

 uT>- +
is the viscous stress tensor (with bulk viscosity assumed zero), J is the identity tensor,

and

+ = _(Vu + ruT): _ (3)

is the viscous dissipation function. The equation of state is

P=pT. (4)

The density, velocity, temperature and pressure are respectively

$

p --
PR'
U*

U --
UR'
T*

T -
TR'

p*

P - RgpRTR"

where the dimensional reference values are denoted by the subscript R and Ra is the

universal gas constant. Dimensional variables have an asterisk superscript. Distance

and time are scaled respectively with respect to LR and tR = LR/UR. In the text, x

refers to the cartesian position vector.

The Prandtl number Pr = (IzRCn)/tcR , the Reynolds number Re = (pRURLR)/#R;

is the ratio of specific heats. Viscosity and conductivity are denoted by # and

respectively and are scaled with respect to #R and tcR.

The reference Mach number

UR (5)
MR - _f_-R-_gTR

is related to the time-dependent turbulent Mach number

M_ u,____2< 7RgT* >

MR <_>. (6)

The objectives of the following analysis is first to classify the various types of

equilibrium turbulent regimes (distinguished by the presence or absence of shocks and
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also by the fraction of the total kinetic energy solely due to compressibility effects),

and second, to predict the range of initial conditions that leads to each one. The

effect of viscosity is felt either on a viscous time scale (much greater than the acoustic

time scale), or during the formation of shocks. In the latter case, viscosity serves to

prevent the formation of singularities. Although there is a distinct possibility that

shocks will form as a result of certain types of initial conditions, viscosity does not help

initiate the processes (wave steepening) which eventually lead to shocks. Rather, the

viscosity diffuses the sharp gradients to generate shocks of finite thickness. The above

considerations lead us to neglect all viscous effects in the theoretical formulation of

the full viscous, Navier-Stokes equations. This assumption will be verified a posteriori

by the direct numerical simulations.

In the following analysis, the turbulent Mach number is assumed to be very much

less than unity, so that the sound velocity is much greater than the flow velocity.

Under these circumstances, the acoustic time scale is much less than the convective

time scale, which in turn is much less than the viscous time scale (if the Reynolds

number is sufficiently large). As will be shown later, the different regimes emerge on

the acoustic time scale, during which time any inconsistency in the acoustic compo-

nent of the flow is washed away. In other words, time boundary layers only extend

over a time period of O(MR).

Dropping the viscous and heat conduction terms, Eqs. (1) become (in nonconser-

vative form)

Op
0--t + u- Vp + pV.u = 0,

+ w) + vP = 0, (7)
OP

O--'t+ u. VP = -'yPV.u.

The initial conditions are arbitrary with the restriction that both MR and the root

mean square (rmJ) pressure, [[p(x, 0)[[, be much less than unity. For the remainder of

this analysis, we assume that for homogeneous turbulent flows, the maximum norm

and the L2 norm are of the same order of magnitude.

B. Asymptotic Analysis

The system of equations (7) is now investigated by an asymptotic analysis which

assumes MR << 1.

component:

where

The pressure P is decomposed into a mean and a fluctuating

P=l+p, (S)

[[p][ << 1. (9)



For simplicity, we neglect any consideration of the entropy mode and assume the

homentropic condition

P=p'. (10)

The density is expanded in powers of p according to

p= 1 + _-'v + O(llpll:). (11)

Using the expansions (8) for pressure and (II) for density,Eqs. (7) become (to first

order in Ilpll)

0u 1

o--/-+u. Vu+_-_RVp = o,

Op

0--_-+ u. Vp + 7V.u
= 0.

(12)

At t = 0 the initial data is

u(x,0) = .0(x),

p(x,0) = po(X).
(13)

It is convenient for the purpose of analysis to split the velocity vector according
to

u = u z + u c, (14)

where the solenoidal component uZ(x, t) satisfies the time-dependent incompressible

Navier-Stokes equations

with initial conditions

GOUI

0-----_+ uz" VuZ = -VPz'

_'U I ---- 0_

u'(x,0) = -o'(X),

V'U0 / = 0.

The incompressible pressure pZ satisfies the Poisson equation

V2p I = --VU I : VU I

(15)

from which it is inferred that

(16)

(17)

W= O(u'_). (18)



The initial solenoidal velocity is determined from the decomposition

u0(x)= + u0 (x). (19)

If the flow is homogeneous, it is easy to show that uI0(x) and UoC(X) are unique

once u0(x) is specified. When the flow is non-homogeneous, an arbitrary potential

function can be added to the decomposition (19). The transverse velocity component,

u z is divergence-free for all time (since it satisfies the time-dependent incompressible

Navier-Stokes equations). Although u c is initially vorticity-free, it acquires a small

degree of vorticity subsequently. Kreiss, Lorenz and Naughton (1990) have estimated

this vorticity to be O(MR).

Substitution of Eq. (14) into Eqs. (12) and manipulation of the resulting expres-

sions using Eqs. (15) yield

Ou c 1

0---_ + uz" VuV 4- u c. Vu I 4- u v. Vu v - ..tM_(Vp - "/M_VpZ),

Op
O---;4- uz " Vp 4- u e • Vp 4- 7V.u c

= 0.

(20)

The momentum equation in Eqs. (20) is simplified if the perturbation pressure is

decomposed according to

P = 7M_p z 4- 6p c. (21)

This particular decomposition removes pZ from the evolution equation for u c. At

t--0,

p'(x, 0) = p'o(X) (22)

is uniquely determined from the incompressible evolution equations, so that there

is no ambiguity in the computation of pC(x, 0). The uniqueness of the pressure

decomposition is maintained for all time. The parameter 6 is defined to insure that

IlvC(x,O)ll= 1. (23)

The total initial velocity u is also normalized to unity, i.e. [[u0(x)[[ = 1. This is most

easily accomplished by choosing

= Iluo(x)ll, (24)

Therefore, both u0c and u0* are O(1). From Eq. (18), IIv0'1]= o(1). Incompressible

variables vary on a slower time scale than the acoustic time scale, which is the time

scale of interest, so that their order of magnitude will remain invariant in time. In

contrast, we will demonstrate that certain combinations of initial conditions can lead

to time boundary layers which can change the order of magnitudes of compressible

variables on a time scale of O(MR).



Substitution of Eqs. (14), (21) into the system (12) leads to the evolution equations

Ou c
0----T+ uZ. Vu c + u c • Vu v + Au v + --_-_Vp c = O,

7M£

OPc uI u c "7 u c
0-----_+ " Vpc + " Vpc + BuC + -_V. = G,

for the compressible components of the flow variables, where

Au G = uc .Vu I,

Bu c _ "/M_uc
5 " _Tpr'

c- _'M-_rOP'
6 ' Ot + uz" Vpz]

For reference, the orders of magnitude for A, B and G at t = 0 are

A = O(1),

_M_
B = O(T),

c = o(-%_).

Since A, B, G only depend on incompressible quantities, their order of magnitude is

constant over the time scale of interest. The initial data is

u°(x,O) = uo(x) - Uo'(×)= Uo_(X),

pC(x,0) = v0(x)- L_-d = v0_(x).

Note that u0v is vorticity-free. The pressure P(x) is now given by

P(x, t)= 1 + 7M_pI(x,t) + &pC(x,t). (25)

It must be noted that although pc and u c are O(1) at t = 0, there is no guaranty

that they will remain so. Should they exceed that order, they will be scaled down,

otherwise terms might be neglected in the governing equations which should be kept.

C. Regime Classification

Freezing coefficients in Eqs. (25) makes it clear that there are two different time scales

present, i.e. the convection scale of order O(1), and the sound wave scale of order

O(MR). Since the initial compressible velocity field u0V(x) is vorticity-free, we expect

u c to vary on the fast acoustic time scale. Therefore we introduce a new time variable

t
t' (26)

MR
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In terms of t', Eqs. (25) become

0uCOt----7- + MR[(u I + uC) • Vu c + Au c] + Vp c = O,

OPc MaT uC
Ot---7 + Ma [(u z + uC) • Vp c + Bu c] + ----g--V. = MR G.

(27)

The system of equations (27) is hyperbolic and for 6 << Ma or 6 >> MR it is highly

asymmetric. Therefore the solution will in general grow rapidly, thus invalidating

the original scalings (see appendix). Only with the symmetrized version of Eqs. (27)

can we be sure that the solution at t > 0 is bounded by the order of magnitude of

the solution at t = 0. Therefore we symmetrize the system in such a way that the

initial data are not "scaled up" because otherwise nonlinear terms which are initially

negligible may not remain so. The change of variables which leads to symmetry is

dependent on whether the coefficient of Vp c in Eq. (27) is less or greater than unity.

In terms of 5, we therefore distinguish two cases.

6 _< MR7

This regime is characterized by low levels of initial acoustic pressure fluctuation.

We first introduce a new dependent variable

which insures that

Eqs. (27) become

5

pC' MR"/
= (28)

IlpoC'll< IlpoCll= o(1).

OU c

Or---7- + Ma[(u' + uC) • Vu c + Au c] + Vp c' = O,

Opc' _ 507 + MR[(u I+uc) .vp c+ Bu c] + V.u c = -G,
7

with initial data

(29)

(30)

By construction, uC(x, 0) and pV'(x, 0) are O(1). If they should be much less than

unity, the dependent variables are rescaled so that they become 0(1), in which

case the coefficients of Eqs. (30) are replaced by smaller coefficients, and the ap-

proximations below become more valid. (The notation f = O(M)is equivalent to



limM-.0 f(M)/M :# 0 < oo. On the other hand, the O(M) symbol only states that

the limit is finite, possibly zero.) The system (30) is a well-behaved system of dif-

ferential equations. However, one must check whether the convective terms remain

negligible when t' = O(1). It is easily shown that on the fast time scale, the lowest

order evolution equations are given by the linear wave equations

_U C

_+Vp c' = 0,
0t'

with the initial data

Opc '

Ot--T + V.uC = O,

uO(x,0) = Uo_(X),

p°'(x,0) -_po_(X).

On the convective time scale, Kreiss et al. (1990) have shown that the wave equation

still describes the acoustic component of the flow.

From the wave equation, it is now easy to predict the order of magnitude of u c

and pV as a function of initial magnitudes. After a time t' = O(1), both u c and pC'

will have the same order of magnitude, given by

u°(x, t') _ p°'(x, t') = O(max(UCo(X),pCo'(X))),

6 )
O(max("0_(x),_--;).

The results are summarized in table 1 for all different initial estimates of velocity.

uC0 pC o

o(1) o(1)
0(M_) O(1)

.Go 0 pGoo

0(1)

O(max(M_, _M-_))

Table 1: Order of magnitude of equilibrium levels of compressible pressure and

acoustic velocity as a function of initial levels.

With the chosen initial normalization for the velocity, u I must be O(1), unless

u c = O(1). The choice of the initial magnitude of the incompressible velocity compo-

nent partly determines the initial variation of the ratio of compressible kinetic energy

to total kinetic energy.

8 > MR7



Now we introduce the new variable

uC, - MR7
6

U C (31)

which insures that

Iluo_'ll _< IJu_ll = O(1).

Using Eq. (31), Eqs. (27) become

(32)

0uC______'
+ (MRu' + LuC'). Vu c' + MRAuC'+ Vp c = O,

Ot' 7

Op° _.o,) 6
0t-----7 + (MRu I + • Vp c + - Bu c' + V.u c' =7 7

MR G

(33)

with the initial data

uC,(x,O ) = MR')'6 u°_(x)'

W(x,O) = pff(x) = 0(1).
(34)

Once again, if the initial data in Eq. (34) should be much less than unity, a rescaling

of velocity and pressure would simply decrease the coefficients of the quadratic terms.

As long as uC'(x, t ') = O(1), Eqs. (33) reduce to

OuC----_'+ 6-uC'. VuC'+ Vpc = O,
Or' 7

c3P----_c+ -6u c' • Vp c + -6 Bu c' + V.u c' = 0,
Or' "y 7

with initial conditions given by Eq. (34). When t'= O(1),

IluC'(x,¢)ll = IlpC(x,¢)ll,
(_(max(Poc, c'= .o )),

: 0(1).

(35)

(36)

Equations (31) and (36) imply that

u°(x,t ') : 6(MJ-_). (37)

When 5 = 0(1), the convective terms balance the time derivative terms, in which

case wave steepening may occur on a t' = O(1) time scale, and there is a propensity

for shocks to form. Note that when shocks do occur, the turbulent Mach number, Mt

is no longer small, but has increased by a factor l/MR from its initial value.
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D. Results

In the previous section, we established the conditions for two separate asymptotic

regimes, depending on whether the ratio of 8 to 7MR was lesser or greater than unity.

We now wish to deduce some physical consequences from the results of the previous

section. To this end, we consider various levels of initial rms values for uC0 and 6.

The rms of u I is fixed at unity. Only when [lu0Cll = O(1) can IluXll < 6(1). It is then

easily shown that the rrns level of u I can be increased to unity without affecting the

order of magnitude estimates at t' = 1.

Table 2 summarizes the theoretical findings from the previous section. To properly

interpret the table, replace a cell value of, for example, 3 by 6(M_). A subscript ()oo

refers to the value of a variable after the initial transients have died away (t' = O(1)),

also referred to as an equilibrium state. When viscous effects are taken into account,

the equilibrium state of all quantities varies over the viscous time scale. They also

fluctuate in time due to higher order convective effects that have been neglected to

lowest order in the current expansion. For example, on the incompressible convective

time scale, the terms MRu z • Vu c induce small fluctuations of the variables about

the equilibrium state of the system.

The rms levels of u0c and 8 are given in the first two columns of table 2. The fifth

and sixth columns contain the new quantity

IluCll2
z = iluCll + ilu ll2 (38)

which is the fraction of the total kinetic energy solely due to acoustic effects. Note

that at t -- 0, the denominator is unity by construction, so that

and

Ilu0'll= (39)

IluoCll = x/_" (40)

From Eq. (37),
1

= 1 + M, llu'[[ 2' (41)

and since Ilu ]l = O(1), 6 = O(1) always implies that Xoo = O(1). Consequently,

the lower the initial level of compressibility at a fixed MR (i.e. the lower X0), the

stronger the initial transient (which extends over the time period O(MR)). As this

imbalance intensifies, the propensity for shocks to form also increases. Table 2 re-

flects these statements in the rows corresponding to & = 6(1). When u0c = 0(1),

UXo= 6(M]), n >_ 1. However, the value of n does not change the previous conclu-

sions. Based on the results in Sarkar, Erlebacher, Hussaini and Kreiss (1989), it is

11



straightforward to show that

where

2"1- 0.52o(1-
(42)

(43)

uCo

0

0

0

0

5

0

1

2

3

0

i

2

3

4

2 0

2 1

2 2

2 3

2 4

2 5

uC pC:

-1

0

0

0

0

0

-i

-2

0

0

0

-1

-2

-1

0

1

1

1

Xo X_ Fo

0 0 2

0 0 0

0 0 -2

0 0 -4

2 0 4

2 0 2

2 2 0

2 2 -2

2 2 -4

4 0 6

4 0 4

4 2 2

4 4 0

4 4 -2

4 4 -4

-I 0

0 0

1 0

2 0

2 -i

2 -2

Table 2: Estimates of equilibrium levelsof compressible pressure (pC),(uC),

X as a function of a wide range of initiallevelsfor pC and u% Table entries

should be interpreted as O(M_ _l* ,,_t,v).

Two separate regimes (differentfrom the mathematical regimes of the previous

section) are apparent from table 2. For large values of 6, IlpCli = O(1), while u c

increases sharply. This sudden increase over the acoustic time scale is most important

when 6 is large and u0c is small. The fact that this increase in the acoustic velocity is

not contingent on 6 = 0(1) indicates that an initial imbalance in compressible energy

can occur without the need to appeal to wave steepening. When 6 is sufficiently

small, u c remains at its initial level and large pressure waves appear in the flow.

The compressible pressure imbalance becomes more severe with decreasing u0c and

decreasing 6. Equilibrium initial conditions are characterized by the juncture between

the two aforementioned regimes. This corresponds to

6 (44)Uo=

12



Using Eq. (39),Eq. (44) becomes

The function

2

M]_Xo _ O( 1 ). (45)
62

 2Mix (46)
62

was introduced by Sarkar et al. (1989) and shown to play a fundamental role in the

description of compressible turbulence. The last column in table 2 tabulates the value

of Fo = F(0) for the various cases. It is now easy to see that a necessary condition

for the appearance of shocks is 5 = 1 (see previous section). If the latter condition

is not satisfied, the level of compressibility will remain small for all time, which is

inconsistent with the appearance of an isotropic distribution of shocks.

It is interesting to establish the conditions under which pC is a good approximation

to the total perturbation pressure p. To this end consider the relation between pC,

pZ and p:

62[1pV[[2 = [[p[[2 + o3M_[[pXl[2 (47)

which is justified if p(x) are pI(x) are assumed to be decorrelated. This is true by

construction at _ = 0 in our direct numerical simulation code (discussed in a later

section). From Eq. (18), ][pZ][ and [luX[[ are related by

m _i(1 -- XO), (48)

where al is an assumed 0(1) constant. Using Eq. (48), Eq. (47) becomes

2 4 2, 211p°112--Ilpoll2+ v MRal(I - Xo) 2. (49)

The incompressible component of the pressure field is therefore negligible when

Ilpoll >> _M_al(1- Xo). (50)

This result will be verified with the help of direct numerical simulations. Equa-

tion (50) tells us that one cannot neglect the influence of p_ at higher levels of MR

and at lower levels of the initial compressibility ratio, X0.

III. Numerical Simulation

A. Numerical Algorithm

Our direct simulations of two-dimensional compressible turbulence are based on Eqs. (1).

The flow is assumed to be isotropic. Hence a double Fourier representation is appropri-

ate. Spectral methods, by nature of their high accuracy and low dispersive and dissi-

pative errors are ideally suited for this problem. Spatial derivatives are approximated

13



by Fourier collocation (Canuto, Hussaini,Quarteroni and Zang 1988). In eachcoor-
dinate direction, N grid points are used; for example xj = 21rj/N, j = O, 1,..., N - 1

in the x direction. The derivative of a function J:'(x) with respect to x is calculated

from the analytic derivative of the trigonometric interpolant of 9_'(x) in the direction

x. Many simulations of incompressible, homogeneous turbulence have used a Fourier-

Galerkin method. The compressible equations, however, contain cubic rather than

quadratic nonlinearities and true Galerkin methods are more expensive (compared

with collocation methods) than they are for incompressible flow. The essential dif-

ference between collocation and Galerkin methods is that the former are subject to

both truncation and aliasing errors, whereas the latter have only truncation errors.

As discussed extensively by Canuto, et al. (1988), the aliasing terms are not signifi-

cant for a well-resolved flow. However, care is needed to pose the relevant equations

for a collocation method in a form which ensures numerical stability. For this reason,

the convective term in the momentum equations is actually used in the equivalent

form

_-[v.(p..) + p.. +.v.(p.)] (51)Vu

As noted by Feiereisen, Reynolds and Ferziger (1981), this form, together with a

symmetric differencing method in space (for example Fourier collocation), ensure

conservation of mass and momentum. Moreover, energy is conserved for the semi-

discrete inviscid equations.

We are interested in the low subsonic regime MR << 1. The sound speed is in

this case much greater than the flow velocity and this imposes a severe restriction

on the time step of any explicit time marching numerical scheme. To remove this

constraint, a splitting method is adopted. The first step integrates implicitly

0p
0--y= 0,

a(pu) _ i _.o---7-+ _[v(Pu") + .. v(p.) + p.. v.] = _v._, (52)
OP
O---T+ u- vp + 7pV-u - c_V.(pu) =

V_T + 7(7- 1)M_V,
RePr Re

from which the acoustic effects that vary on the fast time scale O(MR) have been

removed. The second step integrates the "acoustic equations" which vary on the fast

time scale. These equations are

Op
0--}-+v.(pu) : 0,

Opu 1

a--T--F-_-_aVP = O,

OP
o--T+ c_v . (p.) = o.

(53)
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where Co is the root mean square (rms) of the sound speed.

This splitting is employed at each stage of a low-storage third-order Runge-Kutta

method. To minimize the errors due to the large implicit time step, Eqs. (53) are

integrated analytically. In Fourier space the system (53) become

0#
a--_+_k.rh = 0,

Orh _k ^

+ --M-_P = 0, (54)o-T

oP
c3---t+ tc2°k " rh = O,

where rh = pfi and Fourier transformed quantities, which depend upon the wavenum-

her k, are denoted by a circumflex. Equations (54) are solved exactly in Erlebacher,

Hussaini, Speziale and Zang (1987) and are rewritten here for completeness:

1 ^ ,cokAto, . ,cokAt,,

_(z) = _(1)+_[A cost-- )+/3 smt-- )-A],MRx/_ MRV/_ "

ria(2) = fiat1) ik ._ cokAt, _ cokAto _ ,
cok__R,/._[,, sin( M---_" - b cos( MRV/__, +/3] (55)

p(2) - A cos(c°kAt°) cokm_,a ,_

- MRv_ + h sin(MRx/_7,,

where k = ikl is the magnitude of the Fourier wavevector, A =/5 0),/} = i_k. rh 0).

Superscripts 1 and 2 relate to the end of the first and second fractional step respec-

tively. The effective time-step of the Runge-Kutta stage is denoted by At,. The

advantage of this splitting is that the principal terms responsible for the acoustic

waves have been isolated. Since they are treated semi-implicitly, one expects the

explicit time-step limitation to depend upon v + [c- Co] rather than v + c. (Although

there is also a viscous stability limit for the first fractional step, it is well below the

advection limit in the cases of interest.) This is clearly efficient at low Mach num-

bers. Since the second fractional step is integrated analytically, it does not generate

dispersion or dissipation errors. The only errors incurred are time splitting errors.

If one is truly interested in the detailed time-evolution of the acoustic components,

the time-step must be small enough to resolve the temporal evolution of these waves.

Note however, that because the acoustics are treated exactly in the second step, the

large time step simulation still produces accurate results, but the data is not available

at intermediate times.

The expected stability hmit of this two-dimensional Fourier collocation method

for the compressible Navier-Stokes equations has the form

Ax Ay

At < a min( lu I + ic _ Col + Iv] + Ic - col )" (56)
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For the third-order Runge-Kutta method employed here a = 0.54. For accuracy

purposes, the results herein are all based on a = 0.1.

B. Initial Conditions

The initial conditions for the direct numerical simulations presented here are similar

to those presented by Passot and Pouquet (1987). They are sufficiently general to

produce the various turbulent regimes we expect to occur when MR << 1. One must

separately specify the reference Mach number MR, the Reynolds number, Re, the

Prandtl number, Pr, the rms levels of u0v, u0I, [[Po]l, [[To[[, and the autocorrelation

spectrum for p, T, u v and u I. We now detail the procedure used in the numerical
code.

We first generate random fields in physical space in the range [-0.5, 0.5] for u0,

p0, and To. Next, the velocity is decomposed into the sum

where

u0(x)= u0 (x)+ u'0(x) (57)

This decomposition is unique for homogeneous flows and is accomplished in Fourier

space according to the prescription

k.fi
h _ = h -_5- k,

d c = h- fi*.

After transforming the velocity components back to physical space, we rescale u c,

u z, p, and T to impose a prescribed autocorrelation spectrum. The autocorrelation

spectrum Ew(k) of a variable p(x) is defined as

/p(x)p(x)dx = f Ew(k)dk. (58)

For example, the 2D energy spectrum for u, i.e. E(k), is the autocorrelation spectrum

EII.ll.

We now impose the spectrum

h 2

E(k) = k4e-_% (59)

on each of the variables. The procedure for imposing the required spectrum E(k) is

explained using the density as an example. One scans the wavenumber space, and
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for each pair (kx, kv), the corresponding spherical shell is determined. The i th shell is

defined by
1 1

(i- _ < k < i + 5). (60)

where k = _ + k_. All spherical shells have unit width. The 0 th shell is empty

because k = (0, 0) is the mean component which does not contribute to the autocor-

relation spectrum. The contribution of the i th shell to the autocorrelation spectrum
thus becomes

E 7 = _ I#(k)l _ (61)
• 1 • 1

where//7_ is the discrete representation of fii+_/_ E*(k)dk. (For 2-D flows, spherical

should be interpreted as circular.) Defining Ei as

E, = E(i) (62)

where E(i) is obtained from Eq. (59), the density is rescaled according to

_(i) ,,--- _(i) E/_ (63)
V d.:2i •

in order to impose the desired spectrum. In a similar way, the autocorrelation spectra

for u c, u z and T are calculated. For the velocity, the procedure is identical to that

described for p, except that the scalar p is replaced by a vector, and [/_(k)] _ is replaced

by Ia(k)l

It is still possible to rescale these quantities by an arbitrary constant in physical

space without changing the properties of its autocorrelation spectrum. Therefore, we

impose given rms levels for p, T and u by an appropriate rescaling. There still remains

a degree of freedom on the velocity, since u c and u z can be weighted independently

without affecting the rim of u. Therefore, we specify the initial level of compressibility

in the flow according to

f ue2dx

x = f (uO2+ u,2)ax. (64)

The denominator of Eq. (64) is the total kinetic energy of the system since J" u °-u z = 0
by construction.

The mean values of p and T are then added to the thermodynamic variables to
obtain

p _-- l+p,

T _--- I+T.

The reference pressure in the code is chosen to be PR = pRU_; consequently the

nondimensional pressure is then calculated from

pT

1,- .rUi (65)
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where p and T are respectively the non-dimensional density and temperature. The

turbulent Mach number Mt is related to the reference Mach number MR according

to Eq. (6).

IV. Numerical Validation of Theory

In this section, we show results of 2-D direct numerical simulations on grids of 64 ×

64 to validate the theory described in the preceding sections. This validation is

accomplished by comparing the value of X after several acoustic periods as predicted

by the computation, against that given by the theory. The parameter F, defined by

Eq. (46) is also computed and compared with numerical results.

Given the large parameter space, in every run, the density and temperature fluctu-

ation rms levels are set equal to each other. An extensive parameter range is covered

by considering all combinations of

xo = (0.1,0.5,0.9),
MR = (0.03,0.08,0.3),

IIPI[=][TII = (0.01,0.05,0.1).

Cases are referred to by a 3 digit combination. For example, case 123 refers to

X0 = 0.1, MR = 0.08 and IlPll = IITII = 0.10. Simulations are run at Re = 150,

l lull = 1, k0 = 10. This corresponds to a microscale Reynolds number Rx = 20. The

various diagnostics are computed at every iteration.

The quantities considered for comparison between the numerical computations

and the theory results are

/,yMa._ 2 u 2

F = _ pC ] IITIIx (66)

and X. Both these quantities are computed by averaging them over several consecutive

iterations: X is averaged over iterations 5 to 10 (Xs-10) and 10 to 15 (X10-1s), while

F is averaged over iterations 10-15 (F_0-1s). Their equilibrium values X,¢ and F_

are computed by averaging their values over the last 60 iterations of the 400 iteration

numerical simulation. The two sets of averages for X give an idea of the convergence

rate of X towards the theoretical prediction X th. If X is averaged over too few time

steps, the value could be either over or under predicted since x(t) is an oscillatory

integral which tends to unity. On the other hand, if X is averaged over too many

steps, the effects of viscosity will be noticeable, and agreement with X_ will not be

reached. Averages over five iterations prove adequate.

Table 3 summarizes the simulation results. Note that Xl0-1s is in closer agreement

with X_ u than is Xs-10- On the other hand the average X decays as a function of
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case Xs-lo _(_1o- 15 _(_oa :)(_

111 0.11 0.11 0.08 0.11 1.00 1.01 1.01

112 0.63 0.62 0.44 0.62 0.03 0.98 1.01

113 0.90 0.86 0.76 0.87 0.01 0.98 0.99

121 0.06 0.06 0.05 0.06 6.15 1.00 1.00

122 0.25 0.21 0.14 0.22 0.25 0.92 1.00

123 0.58 0.52 0.32 0.49 0.06 1.68 0.99

131 0.08 0.05 0.06 0.05 86.5 0.73 0.93

132 0.09 0.07 0.06 0.07 3.46 0.88 0.96

133 0.11 0.13 0.09 0.11 0.87 1.09 0.95

211 0.38 0.38 0.24 0.38 4.32 1.03 1.01

212 0.77 0.77 0.59 0.77 0.17 1.01 1.00

213 0.94 0.92 0.84 0.92 0.04 0.96 0.99

221 0.30 0.35 0.21 0.34 30.7 1.07 1.01

222 0.47 0.47 0.29 0.47 1.23 0.93 0.99

223 0.73 0.69 0.29 0.68 0.31 1.23 1.00

231 0.40 0.27 0.47 0.33 432. 0.69 0.96

232 0.40 0.29 0.20 0.35 17.3 0.71 0.96

233 0.42 0.35 0.23 0.38 4.33 0.79 0.99

311 0.84 0.84 0.67 0.83 7.78 1.03 1.01

312 0.95 0.95 0.88 0.95 0.31 1.02 1.00

313 0.99 0.98 0.92 0.98 0.08 0.93 0.99

321 0.78 0.83 0.63 0.82 55.3 1.07 1.03

322 0.86 0.86 0.70 0.87 2.22 0.96 1.01

323 0.94 0.92 0.81 0.93 0.55 1.06 0.99

331 0.85 0.76 0.63 0.82 778. 0.71 1.02

332 0.85 0.77 0.63 0.82 31.2 0.72 1.01

333 0.86 0.80 0.64 0.83 7.80 0.79 1.01

Fo 6111roll
1.00

1.00

1.00

1.05

1.00

1.00

5.10

1.39

1.10

1.00

1.00

1.00

1.01

1.00

1 00

2.93

1.12

1.03

1.00

1.00

1.00

1.00

1.00

1.00

1.12

1.00

1.00

Table 3: Comparison of two-dimensional direct simulation data against theo-

retical predictions. All symbols are defined in the text.
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time in part due to viscouseffectswhich is reflectedby the low valuesof Xoo compared

to X_ in the table.

Sarkar et al. (1989) showed analytically that, for low Mach number turbulence,

the parameter F approaches, and then oscillates about a value of Foo = 1. Table

3, regarding Foo are in agreement with this result. The value of F depends on the

compressible component of pressure, 6p c, not p. Nonetheless, it is p, not pC which is

used to compute F for table 3. Furthermore, the time interval, required to obtain a

good average over the acoustic oscillations also increases with MR. This explains why

F10-1s is not close to unity at the higher values of MR. The last column measures

the departure of the initial compressible rms pressure from the initial rms pressure.

The cases where 6/I]po]] > 1 correlate well with a non-equilibrium value of F after 15

iterations. On the viscous time scale, F is nonetheless close to unity in all cases, which

reflects that the turbulent Mach number has decreased substantially (see Eq. (50)),

i.e. pX has become negligible with respect to pC.

The ratio of X10_ls to X_ is furthest from unity when MR = 0.3, which is explained

by the longer acoustic time scale. Since the averages are computed over a fixed number

of iterations, the sample length at MR ----0.3 is not adequate, and the prediction for

Xoo is not very good. The lower value of Xoo with respect to X_ arises because X

decays on the viscous time-scale. On the other hand, F remains close to unity, and

is basically unaffected by the viscosity terms.

Turbulent simulations with initial flowflelds for which F0 = 1 preclude initial time

boundary-layers which might otherwise impose stringent restriction8 on time-stepping

and code accuracy. We now derive an implicit relation for X as a function of MR and

I IPlI. To this end, we begin by collecting the required formulas. Henceforth, all

quantities refer to initial conditions that are consistent with an equilibrium (F = 1).

Based on a general velocity decomposition

u = _(u c + f_ux) (67)

where a is such that I[u][ = 1, the compressible to total kinetic energy ratio is written

as

Ilu°ll_ IIp°ll_
- (68)x = iluOll_+/_llu,ii _ ,y2M_ ,

and the rms of the compressible pressure field becomes

IlpCll_ : Ilpll_+_M_llp'll _,
_,.__._ii_,ii_= [Ipll_+ 7 _wR_p

where we have assumed that p and pZ are decorrelated. By construction, they are

decorrelated at t = 0 in the numerical code from Eq. (21) More realistically how-

ever, pl and pC are probably decorrelated since the incompressible and compressible

components of the flowfield evolve quasi-independently.
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From the previousset of equationsoneobtains

Ilpll = "T2M_ [x-a_M_(1 - X)2]. (69)

Contour plots of X are shown in Figure 1 (al = 1). It is seen that for moderate to

high values of X, the relationship between I]P]I and MR is linear, which simply restates

that ]lpCl[ and []PI[ are approximately equal. At low values of X, IIP[I decreases, and

eventually reaches zero. In other words, in a turbulent flow in acoustic equilibrium

(F = 1), high rms pressure at high turbulent Mach numbers imply that X is close

to unity. Since a necessary condition for the generation of shocks is 6 = O(1), it

follows that when shocks are present in a turbulent compressible homogeneous flow

in acoustic equilibrium, the compressible part of the flow must dominate.

V. Conclusions

In this paper, an asymptotic theory that is based on an initial-value formulation of the

equations of motion for compressible homogeneous turbulent flow has been presented.

The expansion parameter is the turbulent Mach number, which is assumed to be

small. A key feature of the theory is the decomposition of the turbulent velocity field

into two physically meaningful components. The first is solenoidal and satisfies the

time-dependent incompressible Navier-Stokes equations. This uniquely determines

the second component which is initially irrotational, but acquires a small amount of

vorticity at later times. One consequence of this decomposition, is _he simultaneous

separation of the pressure field into incompressible and compressible components.

The incompressible component is proportional to M R.

To lowest order, the asymptotic theory describes the acoustic part of the flow by a

wave equation which is coupled to the solenoidal flow through the initial conditions.

At later times, stronger coupling will occur through the neglected convective and

viscous terms in the momentum equation. Order of magnitude estimates permit an

apriori estimate of the compressibility levels of the flow as a function of the initial

conditions. It is found that the initial flow can evolve towards two basically different

states (in the absence of shocks). If F0 < 1, the pressure fluctuations remain at their

initial levels, while the velocity fluctuations increase in such a way that X becomes

6(1). On the other hand, if F0 > 1, large pressure waves develop over a time of

O(MR), and the rms level of the acoustic velocity remains constant. This transient

behavior is well described by the solution to the wave equation, and has been checked

against extensive two-dimensional direct numerical simulations. Note however that

the theory is also valid for three-dimensional turbulent flows and spot checks have

been conducted.

It has also been established that a necessary, but not sufficient, condition for the

generation of shocks is that the flow must be in an initial state of disequilibrium (i.e.

F < 1) which results from an initial pressure level which is O(1).
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Several issues need further clarification. First, it is still not clear if there are more

stringent initial conditions which could guarantee the emergence of isotropic shock

distributions in two or three-dimensional compressible turbulent flows. Moreover,

it is not clear how the theory should be modified if the reference Mach number is

no longer small. Second, the current paper only treated the lowest order equations

which resulted from the asymptotic expansions. To understand the evolution of the

turbulent flow on the convective and viscous time scales, it is necessary to keep both

viscous terms, and higher order terms in the Mach number expansion. These higher

order terms will allow an expficit computation of the effects of the incompressible

eddies on the acoustic waves and vice versa. These two issues, are now being studied

and will be the focus of future publications.

VI. Acknowlegements

The authors would like to thank T. Zang and C. Speziale for interesting discussions

and comments on the paper.

REFERENCES

Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; and Zang, T. A. 1988 - Spectral Methods

in Fluid Dynamics, Springer-Verlag, Berlin.

Chu, B.T.; and Kovasznay, L.S.G. 1958 - Nonlinear Interactions in a Viscous Heat-

Conducting Compressible Gas. J. Fluid Mech. 3, 494.

Dwoyer, D.L.; Hussaini, M.Y.; and Voigt, R.G. (Eds.) 1984 - Theoretical Approaches

to Turbulence, Springer-Verlag, New-York.

Erlebacher, G.; Hussainl, M.Y.; Speziale, C.G.; and Zang, T.A. 1987 - Toward the

Large-Eddy Simulation of Compressible Turbulent Flows. ICASE Report No.

87-20 .

Feiereisen, W.J.; Reynolds, W.C.; and Ferziger, J.H. 1981 - Simulation of a Com-

pressible Homogeneous Turbulent Shear Flow. Rep. TF-13. Thesis. Stanford

University.

Kadomtsev, B.B.; and Petviashvili, V.I. 1973 - Acoustic Turbulence. Soy. Phys.

Dokl. 18, 115.

Kovasznay, L.S.G. 1957 - Turbulence in Supersonic Flows. J. Aero. Sciences 20, No.

10,657-682.

22



Kreiss, H.O.; Lorenz; and Naughton,M., 1990- Convergence of the Solutions of the

Compressible to the Solution of the Incompressible Navier-Stokes Equations. To

appear in Advances in Applied Mathematics.

Lighthill, M.J. 1952 - On Sound Generated Aerodynamically. I. General Theory.

Proc. Roy. Soc. A211, No. 1107, 504-587.

Lighthill, M.J. 1954 - On Sound Generated Aerodynamically. II. Turbulence as a

Source of Sound, Proc. Roy. Soc A222, No. 1148, 10-32.

Lighthill, M.J. 1956 - Viscosity Effects in Sound Waves of Finite-Amplitude. In

Surveys in Mechanics, (Eds. G.K. Batchelor and R.M. Davies), Cambridge Uni-

versity Press, 1956, 250-350.

Lumley, J.L. 1989 - The Return to Isotropy in a Compressible Flow. Report FDA-89-

09, Sibley School of Mechanical and Aerospace Engineering, Cornell University.

L'vov, V.S.; and Mikhailov, A.V. 1978a - Sound and Hydrodynamic Turbulence in a

Compressible Liquid. Sov. Phys. J. Exp. Theor. Phys. 47, 756.

L'vov, V.S.; and Mikhailov, A.V. 1978b - Scattering and Interaction of Sound with

Sound in a Turbulent Medium. Sov. Phys. J. Exp. Theor. Phys. 47, 840.

Moiseev, S.S.; Sagdeev, R.Z.; Tur, A.V.; and Yanovskii, V.V. 1977 - Structure of

Acoustic-Vortical Turbulence. Sov. Phys. Dokl. 22_ 582.

Monin, A.S.; and Yaglom, A.M. 1967 - Statistical Fluid Mechanics, 2 , MIT Press,

Cambridge, Massachussets.

Moyal, J.E. 1952 - The Spectra of Turbulence in a Compressible Fluid; Eddy Tur-

bulence and Random Noise. Proc. of the Cambridge Phil. Soc., 48, part 1,

329-344.

Passot, T.; and Pouquet, A. 1987 - Numerical Simulation of Compressible Homoge-

neous Flows in the Turbulent Regime. J. Fluid Mech. 181 441-466.

Sarkar, S.; Erlebacher, G.; Hussaini, M.Y.; and Kreiss, H.O. 1989 - The Analysis and

Modeling of Dilatational Terms in Compressible Turbulence. ICASE Report No.

89-79.

Tanuiti, T.; and We, C.C. 1968 - Reductive Perturbation Method in Nonlinear Wave

Propagation. I. J. Phys. Soc. of Japan, 24, No. 4, 941-946.

Tatsumi, T.; and Tokunaga, H. 1974 - One-Dimensional Shock-Turbulence in a Com-

pressible Fluid. J. Fluid Mech. 65,581.

Tokunaga, H.; and Tatsumi, T. 1975 - Interaction of Plane Nonlinear Waves in a Com-

pressible Fluid and Two-Dimensional Shock-Turbulence. J. Phys. Soc. Japan 38

1167.

23



Zakharov, V.E.; and Sagdeev, R.Z. 1970 - Spectrum of Acoustic Turbulence. Soy.

Phys. Dokl. 15,439.

Appendix A

I. Appendix

We want to explain the behavior of hyperbolic systems which are far from symmetric.

Let us first consider the system of ordinary differential equations

ut=Au=( 0 ta) (Ul) (A1)--ha 0 !1_ U = U2

with initial data

u(0) = u0. (A2)

The matrix A is antisymmetric (A T = -A) so the eigenvalues #j, (j = 1, 2) are purely

imaginary and the corresponding eigenvectors yj are orthonormal with respect to the

scalar product

< u, v >= _1vl + _2v2, lul 2 =< u,u >, (h3)

where an overbar denotes complex conjugate.

given by

u(t) = ale'mtyl + cr2e_t'2ty 2

where

The general solution of Eq. (A1) is

(A4)

al =< yl,uo >, a2 =< Y2, Uo > •

From the orthogonality of the eigenvectors,

(A5)

lu(t)l_ = I_112+ 1_21"= lu(0)l', (A6)

and the amplitude of the solution does not change. This is true for any antisymmetric

matrix which can be shown by the energy method

0

- 0t <u,u>

= < ut,u > "4- < U,Ut >

= <Au,u>+<u,Au>

= -<u, Au>+<u, Au>

= 0.
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The fourth equality is a direct consequenceof the pure imaginary eigenvaluesof A.

Now consider the system

Ut_O_ U.

1 0 ) (A8)fi = 0 _1/2 u,

Introducing the new variable

we obtain the antisymmetric system

By the previous result,

flt = e-ll2a ( 0-1. OL) fi" (A9)

IO(t)l_ = I,_(01' + I_(t)l _
_- I_(0)1_-+ I_(0)1_
= I_(0)1_+ _1_(0)1_.

Assumenowthat _,_(0)= 0(1) and _(0) = 0(1). The generalform (A4) of the
solutiontells usthat in generalboth _,,(t) = O(1) and _(t) = 0(1). Thereforewe
obtain for the original variables

u1(t) = _1(t)= 0(1)

u:(t)-- _-'/'_:(t)= o(cI/2)

which shows that the amplitude

lu(t)l = O(e-1/2)lu(0)l (AIO)

increases dramatically for sufficiently small e though the eigenvalues of A are still

purely in'mginary. We can also express the result in the following way. Assume that

ul(0) = 0 and ua(0) = 1. Then [fi(t)l * = e and

I-(t)l = 1, (All)

i.e. for this initial data, the amplitude does not increase. If we now make a small

perturbation in Ul(0), say u_(0) = r/, then the perturbation will be amplified such that

u_(*) _ O(1 + e-_/2r/) and wa(*) _ O(1 + c_/_r/). Thus if r/>> e_/2 the perturbation

destroys the solution.

There are no difficulties in generalizing the results. Consider the system

ut + Au = 0, (A12)
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whereA is an n x n matrix and u is a vector with n components. Assume that there

is a diagonal transformation

D = diag(dl,...,dn), 0 < dj < 1, (A13)

such that DAD -1 is antisymmetric. Then the amplitude of the solution can grow by

a factor maxj d_-1, i.e.

[u(t)[ = O(maxd;1) [u(0)[. (A14)

In particular, if we initialize the data such that

lu(01 _ lu(0)l, (A15)

then we can find perturbations 77which grow to the order maxj d_-lr].

After Fourier transform, a hyperbolic system

u, = Aux (A16)

becomes

fi, = _wAfi. (A17)

The eigenvalues of _wA are purely imaginary and often there is a diagonal transfor-
mation D such that

_wD A D -1 = antisymmetric matrix. (A18)

Then we can apply our arguments. As an example, we consider the wave equation,

written as a first order system

(°ut = 1 0

The Fourier transform is of the form (A7).

e-1 ) u=. (A19)
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